On a new convergence class in k-bounded sober spaces
نویسندگان
چکیده
Recently, J. D. Lawson encouraged the domain theory community to consider the scientific program of developing domain theory in the wider context of T0 spaces instead of restricting to posets. In this paper, we respond to this calling by proving a topological parallel of a 2005 result due to B. Zhao and D. Zhao, i.e., an order-theoretic characterisation of those posets for which the lim-inf convergence is topological. We do this by adopting a recent approach due to D. Zhao and W. K. Ho by replacing directed subsets with irreducible sets. As a result, we formulate a new convergence class on T0 spaces called Irr-convergence and established that this convergence class I on a k-bounded sober space X is topological if and only if X is Irr-continuous.
منابع مشابه
On A New Convergence Class in Sup-sober Spaces
Recently, J. D. Lawson encouraged the domain theory community to consider the scientific program of developing domain theory in the wider context of T0-spaces instead of restricting to posets. In this paper, we respond to this calling by proving a topological parallel of a 2005 result due to B. Zhao and D. Zhao, i.e., an order-theoretic characterisation of those posets for which the Scott-conve...
متن کاملSome Properties of Continuous $K$-frames in Hilbert Spaces
The theory of continuous frames in Hilbert spaces is extended, by using the concepts of measure spaces, in order to get the results of a new application of operator theory. The $K$-frames were introduced by G$breve{mbox{a}}$vruta (2012) for Hilbert spaces to study atomic systems with respect to a bounded linear operator. Due to the structure of $K$-frames, there are many differences between...
متن کاملON Q-BITOPOLOGICAL SPACES
We study here $T_{0}$-$Q$-bitopological spaces and sober $Q$-bitopological spaces and their relationship with two particular Sierpinski objects in the category of $Q$-bitopological spaces. The epireflective hulls of both these Sierpinski objects in the category of $Q$-bitopological spaces turn out to be the category of $T_0$-$Q$-bitopological spaces. We show that only one of these Sierpinski ob...
متن کاملFixed points for total asymptotically nonexpansive mappings in a new version of bead space
The notion of a bead metric space is defined as a nice generalization of the uniformly convex normed space such as $CAT(0)$ space, where the curvature is bounded from above by zero. In fact, the bead spaces themselves can be considered in particular as natural extensions of convex sets in uniformly convex spaces and normed bead spaces are identical with uniformly convex spaces. In this paper, w...
متن کامل$G$-Frames for operators in Hilbert spaces
$K$-frames as a generalization of frames were introduced by L. Gu{a}vruc{t}a to study atomic systems on Hilbert spaces which allows, in a stable way, to reconstruct elements from the range of the bounded linear operator $K$ in a Hilbert space. Recently some generalizations of this concept are introduced and some of its difference with ordinary frames are studied. In this paper, we give a new ge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1607.01146 شماره
صفحات -
تاریخ انتشار 2016